

THE CONNECTICUT

ECONOMIC DIGEST

Vol.31 No.1 A publication of Connecticut Department of Labor

JANUARY 2026

IN THIS ISSUE...

What the Connecticut Crash Data Repository Reveals 15

Economic Indicators on the Overall Economy 5
Individual Data Items 6-8
Comparative Regional Data 9
Economic Indicator Trends 10-11
Help Wanted OnLine 15
Business and Employment Changes Announced in the News Media 19
Labor Market Areas:
Nonfarm Employment 12-17
Sea. Adj. Nonfarm Employment 14
Labor Force 18
Hours and Earnings 19
Cities and Towns:
Labor Force 20-21
Housing Permits 22
Technical Notes 23
At a Glance 24

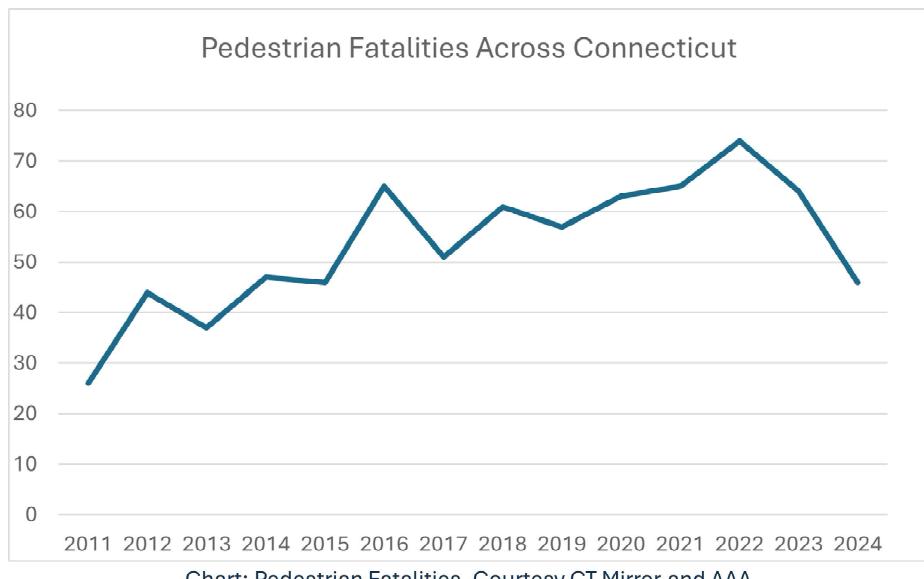
In November...

Nonfarm Employment
Connecticut 1,7
Change over month -0.07%
Change over year +0.76%

United States 15
Change over month +0.09%
Change over year +1.24%

Unemployment Rate
Connecticut 3.
United States 4.1%

Consumer Price Index
United States 3
Change over year +2.8%


What the Connecticut Crash Data Repository Reveals

By Al Sylvestre, AICP, Research Analyst, CT Department of Labor

The Connecticut Department of Transportation (CDOT) Highway Safety Office, the UConn Transportation Safety Research Center, and the UConn Training and Technical Assistance (T2) Center are working to address road safety challenges informed by comprehensive data available through the Connecticut Crash Data Repository (CRD). Road design, driving behaviors, and traffic law enforcement changes on Connecticut streets since the coronavirus pandemic led to spikes in crashes with pedestrian fatalities followed by a decline in the two most recent years for which we have data as shown in the pedestrian fatalities since 2011 (Figure 1).

Notwithstanding the decline since 2022, pedestrian fatalities are nearly twice (180%) the 2011 baseline number. The CDR, a resource of complete, accurate, and uniform crash data, has helped land use planners, traffic and civil engineers, law enforcement, public safety officials, and policy makers understand and address Connecticut's long-standing road-safety challenges since 2011. The CDR facilitates complex queries of crash data recorded by state and local police. Data are compiled by the University of Connecticut Traffic Records Coordinating Committee (TRCC) along with transportation and public safety experts. TRCC engineers and University of

Figure 1

The Connecticut Economic Digest is published monthly by the Connecticut Department of Labor, Office of Research. Its purpose is to regularly provide users with a comprehensive source for the most current, up-to-date data available on the workforce and economy of the state, within perspectives of the region and nation.

The annual subscription is \$50. Send subscription requests to: **The Connecticut Economic Digest**, Connecticut Department of Labor, Office of Research, 200 Folly Brook Boulevard, Wethersfield, CT 06109-1114. Make checks payable to the Connecticut Department of Labor. Back issues are \$4 per copy. The Digest can be accessed free of charge from the DOL Web site. Articles from **The Connecticut Economic Digest** may be reprinted if the source is credited. Please send copies of the reprinted material to the Managing Editor. The views expressed by the authors are theirs alone and may not reflect those of the Connecticut Department of Labor.

This workforce product was funded in part by a grant awarded by the U.S. Department of Labor's Employment and Training Administration. The product was created by the recipient and does not necessarily reflect the official position of the U.S. Department of Labor. The U.S. Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership. This product is copyrighted by the institution that created it. Internal use by an organization and/or personal use by an individual for non-commercial purposes is permissible. All other uses require the prior authorization of the copyright owner.

Managing Editor: Jungmin Charles Joo

Associate Editor: Erin C. Wilkins

We would like to acknowledge the contributions of many DOL Research staff and Rob Damroth to the publication of the Digest.

Connecticut Department of Labor

Danté Bartolomeo, Commissioner

Daryle Dudzinski, Deputy Commissioner

Mark Polzella, Deputy Commissioner

Patrick J. Flaherty, Director
Office of Research

200 Folly Brook Boulevard
Wethersfield, CT 06109-1114

Phone: (860) 263-6255

Fax: (860) 263-6263

E-Mail: dol.econdigest@ct.gov

Website: <http://www.ctdol.state.ct.us/lmi>

Connecticut Transportation Institute information technology staff developed the CDR with funding from the Connecticut Department of Transportation. Before the CDR, Connecticut had separate repositories for motor vehicle crash data: one with CTDOT, the other with the Department of Public Safety (now the Department of Emergency Services and Public Protection or DESPP). In addition to two large-scale repositories, local police departments maintained numerous small-scale repositories throughout the state. Previous data repositories were not easily linked to roadway information, traffic volumes, or other pertinent data including weather, road conditions, and motorist behaviors among other data. As a single data repository, the CDR reduces duplication of effort among researchers.

What follows is a brief examination of the CDR data of which queries can be person-, crash-, or vehicle-centric. :

· **Fatal Crashes** whose data can take up to six months to report following crash investigation.

· **DUI Crashes** in which at least one driver is under the influence of medications or intoxicants.

· **Young Drivers** with at least one driver between the ages of 15 and 25.

· **Crashes involving Motorcycles** with at least one motorcycle involved.

· **Non-Motorist Crashes** involving either a bicyclist or a pedestrian.

· **Pedestrian-involved Crashes** where at least one person involved in the crash is a pedestrian.

· **Bicyclist-involved Crashes**

where at least one person involved in the crash is a bicyclist.

· **Work Zone Crashes** related to the presence of a work zone.

· **Crashes involving School Buses**

Buses in which at least one vehicle is a school bus.

· **Crashes involving ATVs** where at least one vehicle is an all-terrain vehicle (ATV).

· **Roadway Departure Crashes**

in which at least one operator drove off the roadway.

· **Intersections Crashes** that occurred at or near an intersection.

· **Railroad Crossing Crashes** that occurred at a railroad grade crossing.

· **Crashes involving Transit Buses**

Buses in which at least one vehicle is a transit bus.

· **Federal Motor Carrier Safety Administration (FMCSA)¹**

Qualifying Crashes where at least one vehicle is a FMCSA qualifying vehicle with either:

1. a fatality,
2. an injury requiring transportation to a medical facility, or
3. disabling damage to one of the vehicles involved.

· **Crashes Involving Motor Coaches**

where at least one vehicle is a motor coach.

· **Crashes Involving at Least One Wrong Way Vehicle**

traveling on the wrong side or in the wrong direction.

- **Wrong Way Drivers Only** in which the driver and vehicle travel on the wrong side or in the wrong way with no other vehicles or people involved in the crashes.
- **Motorcycle Riders Only** involving motorcycles and riders only.
- **Crashes Involving Children Required to Use Car Seats** with at least one passenger involved who is a child required to be in a car seat until they are aged 7 and heavier than 60 pounds per state law.
- **Children Required to Use Car Seats Only** in which only children who are passengers that should be in a car seat

in the vehicles in which they were riding.

Crash Repository Analytics, Statistics, History (CRASH) queries regarding vehicle actions such as travel direction offer insights that traffic management professionals and public officials can apply to make travel safer for pedestrians. Left-turn crashes involving pedestrians account for nearly one-fifth (18%) of about 5,700 crashes as shown in Figure 2. These can be mitigated by curb extensions that reduce pedestrian crossing distances. The deployment of roundabouts whose efficacy is in slowing traffic so crashes result in less severe injuries to pedestrians, can even eliminate such crashes. Crash mitigation measures for straightaways and curves include road design

elements such as narrowing travel lanes, introducing curves with strategic parking on alternating sides of a straightaway, known in the trade as a chicane (Figure 3), and planting street trees to introduce a sense of enclosure that induces drivers to reduce their speeds. Regarding traffic lights and direction of travel, installing frames behind traffic lights facing east- and west-bound lanes reduces the effects of glare from the rising or setting sun thus making it easier for drivers and pedestrians to more clearly see signal lights.

Three-year CRASH data starting in 2022 summarized by crash, vehicle, and personal variables are available for display as charts filtered by time and date, fatalities and injuries, crash manner and location, road and weather conditions, events (such as collisions with other vehicles, pedestrians, animals, and moving or stationary objects), vehicle actions, demographics, crash severity, and several other factors that offer granular insight. Pedestrian crash conditions provide information about factors that may have influenced pedestrian crashes. The overwhelming majority of those crashes occurred when roads were dry and the weather was clear. Wet, snowy, and slushy road conditions, and roads under moving or still water were present in fewer than 16% of pedestrian crashes. Rain, clouds, snow, freezing rain, fog, drizzle, hail, and sleet combined were present in just over 16.5% of such crashes. One statistic that was close to expected was that 1,876 or 41.7% of pedestrian-involved crashes occurred in other than full daylight.

Drivers older than 70 accounted for 10% of those involved in pedestrian crashes, while 21% of

Figure 2

Vehicle Action	Count of Vehicles	% of Total Vehicles
Grand Total	5,657	100.0%
Straight Ahead	2727	48.2%
Turning Left	1,039	18.4%
Turning Right	455	8.0%
Backing	406	7.2%
Parked	349	6.2%
Entering Traffic Lane	78	1.4%
Passing/Overtaking a Vehicle	76	1.3%
Negotiating a Curve	73	1.3%
Slowing	66	1.2%
Stopped in Traffic	26	0.5%
Changing Lanes	25	0.4%
Leaving a Traffic Lane	23	0.4%
Wrong way or side	15	0.3%
Making a U-Turn	13	0.2%
Overtaking / Passing a Cyclist	3	0.1%
Traveling in Bike Lane	2	0.0%
Other	139	2.5%
Unknown	142	2.5%

such crashes were drivers under age 30. A third of pedestrian crashes involved female drivers while two-thirds involved male drivers. The statistics suggest that more education of young drivers could lead to fewer crashes involving pedestrians.

Data from the CDR's crash emphasis area show that about 4% of nearly 91,000 crashes resulted in serious injury or fatality with fatalities spiking in pandemic years 2020-2023. Fatalities reached their peak in 2021, a 67% increase over 2019, before declining in 2024. The ten-year timeline shows that most fatalities occurred on state and local roads while combined speed-related deaths on US and Interstate routes were fewer than those reported on local roads. Time-of-day crashes peaked at commuting times with highs recorded at 7:00 AM, 3:00 PM, and 4:00 PM while the fewest crashes occurred in the 4:00 AM to 6:00 AM pre-dawn hours.

Vehicle types, ages, and actions by crash severity (fatality, injury, property damage), and manner of collision show that of 92,096 vehicles in speeding crashes between early 2015 and the present, 65% were passenger cars, 20% were SUVs, while 2% were motorcycles. Unexpectedly, nearly half (47.7%) of speeding crashes occurred as the vehicle was on a straightaway while curves and turns were featured in only 30.5% of such crashes. Fatalities in speeding crashes were most numerous in 12-year-old vehicles (69), followed by 13-year-old vehicles (56), then eight-year-old vehicles (55). Property-damage-only crashes occurred most frequently among 12-year-old vehicles (3,500), followed by 11-year-old vehicles (3,400), then 10-year-old vehicles (3,300). About one-fifth (21.3%) of speeding crashes were front-to-

rear collisions. Angle crashes were a distant second at just under 11% and sideswipe collisions among vehicles going in the same direction were 5.6% of such crashes.

Of the 92,079 drivers involved in speeding crashes, nearly half (44.9%) suffered some type of injury while the fatality rate for this group is 1.1%. Of drivers committing the 10 most frequent actions contributing to speeding crashes, 31% failed to keep their lane while 13.1% ran off the road 12.9% were driving recklessly or in a distracted manner, and 12.2% followed too closely.

The wealth of information available on the Connecticut Crash Data Repository has enormous potential for helping planners, engineers, traffic authorities, and law enforcement understand the myriad causes of crashes. Knowledge gleaned from the data presents the opportunity

Figure 3: Chicane With Alternate Side Parking

to reduce the number of crashes through education, improved road design, and public policy changes. The UConn Transportation Safety Research Center, the CTDOT Highway Safety Office, and the UConn T2 Center are working separately and in concert to address road safety challenges through research, training, and testing. Road safety audits, training programs, classes, and seminars

for planners and local traffic authorities, and the application of street design and maintenance innovations are but a few of tools being developed and applied to make Connecticut's streets and roads safer for all their users that include people who walk, drive, use wheelchairs, ride bicycles and scooters, and use public transportation to connect with their communities. ■

1 Trucks and buses registered with the Federal Motor Carrier Safety Administration

GENERAL ECONOMIC INDICATORS

(Seasonally adjusted)	3Q 2025	3Q 2024	YoY CHG NO. %	2Q 2025	QoQ CHG NO. %
General Drift Indicator (2007=100)*					
Leading			0.0 ####		0.0 ####
Coincident			0.0 ####		0.0 ####
Real Gross Domestic Product** (Millions of chained 2017 dollars)	3Q 2025	3Q 2024	YoY CHG NO. %	2Q 2025	QoQ CHG NO. %
Connecticut			0 ####		0 ####
United States			0 ####		0 ####
New England			0 ####		0 ####
Per Capita Personal Income** (Current \$, SAAR)	3Q 2025	3Q 2024	YoY CHG NO. %	2Q 2025	QoQ CHG NO. %
Connecticut			0 ####		0 ####
United States			0 ####		0 ####
New England			0 ####		0 ####
Philadelphia Fed's Coincident Index (2007=100)***	Nov 2025	Nov 2024	YoY CHG NO. %	Oct 2025	MoM CHG NO. %
Connecticut			0.00 ####		0.00 ####
United States			0.00 ####		0.00 ####

Sources: *Dr. Steven P. Lanza, University of Connecticut, <https://steven-lanza.uconn.edu/the-connecticut-green-sheet/>
U.S. Bureau of Economic Analysis *Federal Reserve Bank of Philadelphia

General Drift Indicators are composite measures of the four-quarter change in three coincident (Connecticut Manufacturing Production Index, nonfarm employment, and real personal income) and three leading (housing permits, manufacturing average weekly hours, and initial unemployment claims) economic variables, and are indexed so 2007 = 100.

The **Philadelphia Fed's Coincident Index** summarizes current economic condition by using four coincident variables: nonfarm payroll employment, average hours worked in manufacturing, the unemployment rate, and wage and salary disbursements deflated by the consumer price index (U.S. city average).